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IS OMEGA SQUARED LESS BIASED? 

A COMPARISON OF THREE MAJOR EFFECT SIZE INDICES IN 

ONE-WAY ANOVA 

Kensuke Okada* 

The purpose of this study is to find less biased effect size index in one-way analy­
sis of variance (ANOVA) by performing a thorough Monte Carlo study with 1,000,000 
replications per condition. Our results show that contrary to common belief, epsilon 
squared is the least biased among the threemajorindices, while omega squared produces 
the least root mean squared errors, for all conditions. Although eta squared results in 
the least standard deviation, this does not necessarily make it a good estimator because 
a considerable amount of bias still occurs when the sample size is small. 

1. Introduction 

The importance of investigating and reporting not only the results of null hypoth­

esis statistical testing (NHST) but also the magnitude of the effect involved is widely 

accepted in psychological and behavioral research. The measure of the magnitude of 

effect is called effect size (ES). Complete reporting of the estimates of appropriate 

effect sizes is one of "the minimum expectations for all APA journals" (American 

Psychological Association, 2009, p.33) and a requirement for 24 scholarly journals 

(Natesan & Thompson, 2007), including five educational research journals (Alhija & 
Levy, 2009). The rationale for requiring reporting effect size includes allowing readers 

to quantitatively evaluate the practical importance of study results and to incorporate 

these results in future meta-analyses (Cumming & Finch, 2001). 
Although the importance of reporting and interpreting effect sizes is widely recog­

nized, the detailed characteristics of effect size indices have received relatively little 

attention. For instance, there arc more than seventy varieties of effect size indices 

(Kirk, 2003). The fact that effect size indices are not unique requires further research. 

In this paper, we consider one-way fixed effect analysis of variance (ANOVA) with 

independent samples. The total population variance O"; is divided into the sum of 

variance between groups, O"�, and the variance within groups, O"� : 

(1) 

where O"� repre::-;ents the variance due to different levels of the independent variable, 
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and CT;, represents the variance that cannot be attributed to the independent variable 
(i.e., the error term). The population effect size, ry

2
, is defined as 
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ry
2 represents the amount of variance in the dependent variable explained by the inde­

pendent variable, ranging from 0 (no effect) to 1 (maximum effect). This is typically 
the quantity of interest in AN OVA procedures (Graham, 2008). The population effect 
size, ry

2
, is an unknown parameter, and as such, must be estimated from samples. 

There are three major sample effect size indices in ANOVA (Grissom & Kim, 
2004; D. Matsumoto, Kim, & Grissom, 2011; Keppel, 1982; Olejnik & Algina, 2000): 
eta squared (7]

2
); epsilon squared (€

2
; Kelley, 1935); and omega squared (w

2
; Hays, 

1963)1). These sample indices correspond to the same population parameter, ry
2
, m 

Equation 2. They are defined as follows (Maxwell, Camp, & Arvey, 1981, p.527): 
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where SSt is the total sum of squares; SSb is the sum of squares between groups; SSw 
is the sum of squares within groups; dfb is the degree of freedom between groups; 
MSw is the mean sum of squares within groups; and SSt = SSb + SSw.

Among these three effect size indices, 7]2 was developed as a descriptive index while 
€
2 and w2 were intended for inferential purposes (Maxwell et al., 1981). The nature of 

7]
2 is easily understood as it is given by replacing the population variance parameters 

in Equation 2 (<Tr and CT� ) with the corresponding sample sum of squares (SSt and 
SSb)· Meanwhile, €2 and w2 are inferential indices which correct the bias in estimating 
the population effect size, ry

2

. 
Both €

2 and w2 are constructed by substituting the
variance component parameters of ry

2 with its bias-corrected sample estimators. 
The idea of Kelley's (1935) €2 is simply to substitute the population parameters CT? 

and CT;, in Equation 2 with their corresponding unbiased estimators. To be specific, 
he estimated CT; with SSt/(n - 1 ) and CT;, with MSw, where n is the sample size. On 
the other hand, Hays (1963) used the relationship 

(6) 

where nj represents the number of observations in the j-th of J levels (groups) and 

l) Note that f/2, €2, and w2 (Equations 3 to 5) are sample counterparts of the same parameter, 172 
(Equation 2). This popular notation of effect size may seem unusual because unlike the typical meaning 
of the hat symbol, €2 and w2 are estimators of 172. 
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Ctj represents the deviation of each group-specific mean from the grand mean, to 
reformulate the Equation 2 as 

(7) 

Then, he estimated the numerator and denominator of Equation 7 with their respec­
tive unbiased estimators, SSb - dfbMSw and SSt + MSw, to derive the formula for w2. 
Thus, because their decompositions and sample estimators are different, €2 and w2 
are also different. 

Although their original derivations were different, the resultant forms of the three 
indices are similar to each other. Equations 3 to 5 show that €2 is given by subtracting 
dfbMSw from the numerator of ft2, while w2 is given by adding SSw to the denomina­
tor of €2. Because every term in Equations 3 to 5 are greater than or equal to zero, 
the following inequality holds true for all three indices: 

(8) 

It is known that ft2 overestimates the population effect size, ry2, because its numerator, 
SSb, is inflated by some error variability (Grissom & Kim, 2004). Previous studies 
such as those by Snyder and Lawson (1993) and Maxwell and Delaney (2004) give 
a detailed discussion of this bias. Note that ft2 is also known as the coefficient of 
determination or R2, which is also known for its upward bias. Also, €2 is equivalent 
to the adjusted R2 (Ezekiel, 1930). 

Both €2 and ft2 replaces the parameters of the variance ratio ry2with their corre­
sponding sample estimators. However, a ratio of unbiased estimators is generally not 
an unbiased estimator of the ratio (Olkin & Pratt, 1958). In fact, it is shown that 
none of the three sample effect size measures ( ft2, €2, and w2; Equations 3 to 5) is 
an unbiased estimator of ry2 (Darlington, 1968). It is also shown that as sample size 
tends to infinity, ft2, €2, and w2 all converge toward the same value (Maxwell et al, 
1981). However, little is known about their comparative behaviors in realistic finite 
(small) sample settings. In order to investigate the finite sample properties of these 
effect size measures, Monte Carlo experiments are required. 

For several decades, researchers believed that w2 is the least biased index among the 
three, followed closely by €2, and then ft2. Keselman ( 1975) studied the performance 
of ft2, €2, and w2 in a Monte Carlo study using Cohen's (1969) definitions of small, 
medium, and large population effects under a correct model, that is, one in which 
the assumptions of ANOVA and effect sizes are correct. Keselman (1975) states, "the 
mean values for omega squared are consistently closer to the population treatment 
magnitudes while the mean values for epsilon squared are always slightly larger than 
omega squared but smaller than the mean values for eta squared" (p.47). In their 
textbook on effect size, Grissom and Kim (2004) agree with Keselman's findings, cit­
ing that "a somewhat less biased alternative estimator of ry2 is €2, and a more nearly 
unbiased estimator is w2" (p.121) . A similar description is provided by D. Matsumoto 
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et al. (2011) . Olejnik and Algina (2000) explain the order of bias among the three 
indices: 

Epsilon squared corrects the numerator of eta squared by subtracting the error 
mean square from the contrast sum of squares. Omega squared further adjusts 
epsilon squared by adding the error mean square sum to the total sum of squares 
in the denominator of epsilon squared (p.262)2l. 

These commonly-held beliefs, however, raise several questions. First, 0
2 was not 

originally intended as the index that "further adjusts" €2• Although it is easy to 
derive such an interpretation from the indices' formula as shown in Equations 4 and 
5, 0

2 and €2 are actually derived independently. Hays (1963) , for instance, did not 
use €2 at all in his derivation, nor tried to "further correct" i2. Thus, although the 
ordinal relationship shown in Equation 8 holds, it is possible that w2 underestimates 
the population effect size more than €2 does. 

Second, another Monte Carlo study by Carroll and Nordholm (1975) produced re­
sults that somewhat contradicted those of Keselman (1975) . Putting aside the fact 
that their study used a smaller number of replications per condition than Keselman's 
which may have resulted in more sampling errors, Carroll and Nordholm's (1975) re­
sults implied that while "0

2 is slightly negatively biased" (p.548), ·'any bias in €2 is 
not evident" (p.549) . However, their overall conclusion was that "it was found that 
0

2 and €2 were very similar" (p.553 ) and they did not investigate further. 
Since these two studies were performed more than thirty years ago, there were no 

other comparable studies conducted to evaluate the performance of these ANOVA 
effect size indices. Although some researchers such as Maxwell et al. (1981) and 
Snyder and Lawson (1993 ) discussed the values of f/2, €2, and 02 for a single dataset 
extensively, they did not attempt to measure the extent of bias among these indices 
using a Monte Carlo study. Owing to the lack of research on the bias of these indices, 
a consensus on which index is most appropriate for certain cases has not yet been 
reached (Kline, 2004, p.100) . 

One of the reasons for the unreliable conclusions of studies such as Keselman (1975) 

and Carroll and Nordholm (1975 ) is the limited capabilities of computers during that 
period, which only allowed a relatively small number of replications per condition. 
The 5,000 and 1.000 replications per condition used by Keselman (1975) and Carroll 
and Nordholm (1975), respectively, may not be sufficient for today's standards. 

Another limitation of these older studies is that they evaluated the effect size in­
dices in terms only of their mean:-; and standard deviations. Since standard deviation 
is the mean squared deviation from the sample mean and not from the true value, ry2, 
it may be insufficient for evaluating the sample effect size indices. Because standard 
deviation does not take r72 into account, there may be cases in which the standard 
deviation is small but sample:-; are substantially biased from the true value. 

This study aims to contribute to the current body of literature by overcoming the 

2) Although Olejnik and Algina (2000) also showed the equations for €2 and w2 within this quotation, 
we omitted them to avoid confusion because their notation is different from that in our study. 
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two main limitations of these older studies. We compare the performance of these 
three effect size indices by evaluating the bias and errors under the correct model 
using modern computers. We use the same condition as Keselman's (1975) numer­
ical experiment, increasing the number of replications per condition to 1,000,000 to 
ensure an exhaustive comparison of the effect size indices. We also add a sample size 
condition to the numerical experiment to assess the effect of sample size to the bias 
of the effect size indices. 

In addition, we also calculated the root mean squared errors (R MSEs). While 
standard deviation measures the square root of the average squared discrepancy from 
the sample mean, R MSE measures the square root of the average squared discrep­
ancy from the true value. Note that if the sample mean of the estimator exactly 
corresponds to the true value in the population (i.e., there is zero bias), the standard 
deviation is the same as the R MSE. In reality, however, this is not usually the case. 
By using the R MSE, we account for errors in estimating the population effect size. 

2. Method 

As we have mentioned earlier, our numerical experiment is based on Keselman's 
(1975) study. We use a one-way, four-level ANOVA model with independent samples 
where the population effect size magnitude is controlled according to Cohen's (1962) 
criteria of small, medium, and large population effects. After reviewing a volume of 
the Journal of Abnormal and Social Psychology, Cohen (1962) argues that the large 
experimental treatment effects were those in which the treatment means differed by 
.40 standard deviation unit. Medium and small treatment effects are also opera­
tionally defined by Cohen as those in which the means differ by .25 and .10 standard 
deviation unit, respectively3l. 

The variability of population means within four levels is controlled as either max­
imum or intermediate. Table 1 (a) shows the specific population mean values under 
all three effect sizes multiplied by two mean variability conditions in population. The 
treatment means are dichotomized at the end points of their range difference to cre­
ate maximum variability among them (Cohen, 1969, p.270). For instance, for four 
treatment means differing by .40 standard deviation unit (i.e., large treatment effect), 
the range of the differences is 1.20, and therefore µ1 = 0.00, µ2 

= 0.00, µ3 = 1.20. 
and µ4 = 1 .20. Intermediate variability occurs when the means are equally spaced 
over their range. For instance, for the same treatment means condition, µ1 = 0.00, 
µ2 

= 0.40, µ3 = 0.80, and µ4 = 1.20. Note that the values in this table are the same 
as those in Table 1 of Keselman's (1975) study. The population standard deviation of 
all conditions is 1. The population (true) effect size for each condition is also shown 
in Table 1 (b). 

Our study differs from Keselman's (1975) in several ways. First, owing to the capa-

3) Note that these values are different from what is implied by so-called Cohen's (1969) criteria of 
large, medium and small effects for effect sizes d or R2• We used these values based on Cohen (1962) 
in order to obtain comparability with Keselman's (1975) study. 
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Table 1: 
(a) Population Means for Each Effect Size Magnitude and Mean Variability Condition 

ES 
Mean Variability 

Magnitude Maximum 
µi µ2 µ3 µ4 µi 

Large 0.00 0.00 1.20 1.20 0.00 
Medium 0.00 0.00 0.75 0.75 0.00 
Small 0.00 0.00 0.30 0.30 0.00 

(b ) Population Effect Size for Each Conditiong 

ES 
Magnitude 

Large 
Medium 
Small 

Mean Variability 
-----

Maximum 

.26471 

. 12329 

.02200 

Intermediate 

. 16667 

.07246 

.01235 

Intermediate 
µ2 µ3 µ4 

0.40 0.80 1.20 
0.25 0.50 0.75 
0. 10 0.20 0.30 

bilities of the modern computer, the number of random samples per one condition is 
substantially higher at 1,000,000. In Keselman's study, the relatively smaller number 
of replications has led to a number of potential errors. For instance, €2 overestimates 
the population effect size in large treatments and maximum variability conditions and 
underestimates it in other conditions (Keselman, 1975, Table 2). Because the hypoth­
esized model is correct in all the conditions, this result can be due to the sampling 
errors owing to the small number of replications. With 1,000,000 replications, we 
expect that sampling error in our study will be very minimal. Second, our study also 
considers sample size per analysis as a third condition of the numerical experiment. 
In contrast, Keselman (1975) does not show the sample size used in his numerical 
experiment; he only states that "nj observations" are used (Keselman, 1975, p.47) , 
not showing nor controlling the actual value of nj. In our study, we controlled the 
number of observations per group from 10 to 100 in increments of 10, enabling us to 
consider the effect of sample size on the performance of the effect size indices. Each 
of the four groups includes an equal number of observations. 

Third, we evaluated our results in terms of three measures: bias, standard devi­
ation, and R MSE. While Keselman (1975) only reported the means and standard 
deviations of the effect size indices, we also included the indices' R MSEs as an impor­
tant indicator of their performance. In addition, we explicitly calculated the biases 
of the effect size indices. Although it is possible that Keselman (1975) and Carroll 
and Nordholm (1975) calculated the biases from their results, they did not explicitly 
show it. 

The sample effect size statistic, {J2, denotes one of the indices f]2, €2, or w2; Bf 
denotes their sample values in the i-th replication; and 02 denotes their means over 
nrep replications. In this study, as noted above, nrep = 1, 000, 000. The bias of the 
estimator, 02, is given by 

(9) 
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Maximum 
r,2 

Medium €2 
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Small €2 
c.;2 
r,2 

Large €2 
c.;2 

Inter- r,2 
mediate Medium €2 

c.;2 
r,2 

Small €2 
c.;2 

Table 2: Resulting Biases for the Effect Size Indices 

Sample size per group 

10 20 30 40 50 60 70 80 90 100 

.05439 .02671 .01779 .01338 .01058 .00885 .00757 .00663 .00588 .00529 

-.00235 -.00126 -.00077 -.00050 -.00052 -.00038 -.00034 -.00028 -.00027 -.00024 

-.00686 -.00361 -.00235 -.00170 -.00148 -.00119 -.00102 -.00089 -.00081 -.00072 

.06570 .03227 .02146 .01599 .01286 .01059 .00914 .00800 .00711 .00640 

-.00189 -.00106 -.00066 -.00056 -.00036 -.00042 -.00029 -.00025 -.00021 -.00020 

-.00427 -.00234 -.00153 -.00122 -.00089 -.00086 -.00067 -.00059 -.00051 -.00046 

.07482 .03690 .02453 .01829 .01464 .01219 .01043 .00914 .00814 .00731 

-.00045 -.00025 -.00013 -.00016 -.00010 -.00008 -.00009 -.00006 -.00004 -.00005 

-.00083 -.00049 -.00030 -.00029 -.00021 -.00017 -.00016 -.00012 -.00010 -.00010 

.06204 .03050 .02029 .01521 .01206 .01004 .00863 .00757 .00672 .00605 

-.00223 -.00119 -.00074 -.00052 -.00051 -.00043 -.00033 -.00027 -.00025 -.00022 

-.00536 -.00284 -.00186 -.00137 -.00119 -.00100 -.00082 -.00070 -.00063 -.00056 

.07015 .03453 .02296 .01710 .01372 .01136 .00978 .00855 .00758 .00683 

-.00130 -.00072 -.00044 -.00041 -.00027 -.00029 -.00019 -.00017 -.00017 -.00014 

-.00273 -.00151 -.00097 -.00082 -.00060 -.00057 -.00043 -.00038 -.00035 -.00031 

.07574 .03737 .02484 .01854 .01484 .01235 .01058 .00924 .00823 .00740 

-.00026 -.00014 -.00006 -.00009 -.00005 -.00005 -.00004 -.00005 -.00002 -.00003 

-.00043 -.00027 -.00015 -.00017 -.00011 -.00010 -.00008 -.00009 -.00006 -.00006 

Keselman 
(1975 ) 

.0512 

.0003 

-.0039 

.0184 

-.0006 

-.0016 

.0043 

-.0003 

-.0003 

.0309 

-.0005 

-.0022 

.0143 

.0004 

.0001 

.0020 

-.0001 

-.0001 
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The standard deviation of the estimator is calculated by 

"'�··ep (fP -{
J2)

2 

L_.,1=1 1 l 

nrep 

The root mean squared error (RMSE) is calculated by 

"'�rep 
({

P -
2)

2 

L_.,1=1 1 7] 
nrep 

(10) 

(11) 

Apart from the three major instances cited above, our study differs from Keselman 
(1975) in other, albeit minor, ways. We generated a random number of the artifi­
cial datasets from normal distributions with predetermined means shown in Table 1 
and standard deviation of 1 using the Mersenne twister algorithm (M. Matsumoto 
& Nishimura, 1998). This algorithm provides fast and high-quality pseudorandom 
numbers and is adopted as a default random number generator by many statisti­
cal computer programs including R and Matlab. We therefore expect the quality of 
the random numbers to be better than in previous studies, during which time the 
Mersenne twister algorithm has not yet been developed. Also, we did not include a 
condition when the distribution of the population is exponential rather than normal 
in order to intensively study the performance of the indices under the correct model. 
This is because it is often not reasonable to assume that psychological data is ex­
ponentially distributed. In fact, Keselman (1975) only briefly described the results 
for an exponential distribution. Moreover, he found that "the above results [for nor­
mal distribution] are also descriptive of the data when sampling observations from 
the non-normal exponential distribution" (p.47). Based on the above analysis, we 
concluded that we do not need to include the exponential distribution conditions. 

We performed the entire analysis using the software, R 2.13.l (R Foundation for 
Statistical Computing, 2011). We included the R code used in this study in the Ap­
pendix for other researchers hoping to conduct further studies in this area. Note that 
by definition, the estimates w2 and €2 occasionally take negative values. Although 
negative sample effect size is sometimes reported as 0, Fidler and Thompson (2001) 
argued that any obtained negative effect size value should be reported as it is to fa­
cilitate interval estimation. Based on their argument, and also following Keselman 
(1975) and Carroll and Nordholm (1975), we used all the estimates in nrep = 1, 000, 000 
replications. 

3. Results and Discussion 

3.1 Bias 

The resultant biases in all the conditions are summarized in Table 2 and plotted in 
Figure 1. Our most important and impressive finding is that €2 has the least absolute 
bias among the three indices, surpassing w2 in all the conditions, in contrast with 
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A. Large population ES, maximum variability 
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C. Medium population ES, maximum variability 
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B. Large population ES, intermediate variability 
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D. Medium population ES, intermediate variability 
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F. Small population ES, intermediate variability 
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.OS 
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.02 

.01 

.00 

Bias 

-.01 10 20 30 40 50 60 70 80 90 100 

Sample Size 

+ Eta squared ( i\2) • Epsilon 8quared ( £2) A Omega 8quared (@2) 

Figure 1: Plot of the results shown in Table 2. The x-axis is the sample size per group and the 
y-axis is the resulting biases for the effect size indices. 

the commonly-held belief that w2 is less biased than €2 (Grissom & Kim, 2004; D. 
Matsumoto, et al., 2011). As shown in Table 2 and illustrated in Figure 1, the bias of 

€2 is the least among the three in every sample size conditions, and €2 always slightly 

underestimated the true effect size (i.e. , €2 has a slight negative bias); w2 also has a 

negative bias whose magnitude is always greater than i2's; and f/2 has a considerable 



138 K. Okada 

large positive bias, even when sample size is 100. Note that in general underestima­

tion is preferable to overestimation which can erroneously identify an effect that does 

not in fact exist. 

Since all of the above findings apply to all other combinations of population effect 

size and variability conditions, we can therefore conclude that in terms of bias, €2 is 

the best index among three. Note that for all three effect size indices, the absolute 

bias becomes larger when the sample size is small. 

Although Keselman (1975) did not expressly calculate biases, we can compute them 

from the results presented in his paper. Therefore, we also calculated the biases from 

the results of Keselman's study, as shown at the rightmost column of Table 2. We 

found that Keselman's results show the same ordinal pattern of the absolute bias 

as ours, lbias(€2) I < lbias(w2) I < lbias(i)2) I, although this relation is obscured when 

population effect size is small owing to the sampling errors brought about by the small 

number of replications. Also, unconformities, such as the seemingly positive bias of 

€2 and w2
' or the seemingly lesser bias of w2 than €2

' are sometimes found in biases 

calculated from Keselman's results. The results of our Monte Carlo study, meanwhile, 

do not show any of the unconformities. 

3.2 Standard Deviation 

The resulting standard deviations for all the conditions are summarized in Table 3 
and illustrated in Figure 2. Contrary to our results for bias, our findings show that in 

all conditions, i)2 has the least standard deviation, followed by w2, then €2. Similar 

findings were also found by Keselman (1975), as shown in the rightmost column of 

Table 3, although this relation is obscured under small population effect conditions 

due to sampling errors. From this, Keselman (1975) stated that "eta squared could be 

considered the more efficient estimator (p.47)." However, it is important to remember 

that i)2 has a considerably large bias when the sample size is small, and that an esti­

mator would have a small standard deviation even if its estimates were consistently off 

deviate from the true value. It is therefore insufficient to determine the quality of an 

estimator based only on its standard deviation. Root mean squared errors (RMSEs) 

are needed as additional indicators. 

3.3 RMSE 

The resulting RMSEs for all the conditions are shown in Table 4 and illustrated in 

Figure 3. In all the conditions, w2 has the least RMSEs, followed by a narrow margin 

by €2, then i)2• Our results show that the difference between w2 and €2 is almost 

always small, although this relationship is consistent across conditions. i)2 tends to 

have the highest RMSEs among the indices. The difference between i)2 and the other 

two indices also tends to be larger when the population effect size is small. 

Although i)2 has the least standard deviation among three, we found that it actu­

ally has the largest RMSE which means that although the variability of i)2 is relatively 



Mean ES ES 
Variability Magnitude Index 

r,2 

Large €2 

w2 

Maximum r,2 

Medium €2 

w2 

r,2 

Small €2 

w2 

r,2 

Large €2 

w2 

Inter- r,2 
mediate Medium €2 

w2 

r,2 

Small €2 

w2 

Table 3: Resulting Standard Deviations for the Effect Size Indices 

Sample size per group 

10 20 30 40 50 60 70 80 

.11078 .07863 .06427 .05562 .04978 .04546 .04211 .03941 

.12001 .08173 .06593 .05669 .05054 .04603 .04257 .03978 

.11861 .08125 .06568 .05652 .05042 .04594 .04250 .03972 

.09931 .06854 .05543 .04781 .04267 .03884 .03590 .03357 

. 10758 .07124 .05687 .04873 .04332 .03934 .03629 .03389 

. 10570 .07060 .05652 .04851 .04316 .03922 .03619 .03381 

.07031 .04224 .03212 .02667 .02319 .02079 .01894 .01756 

.07617 .04391 .03296 .02718 .02354 .02105 .01915 .01773 

.07451 .04342 .03270 .02702 .02343 .02097 .01909 .01767 

.10526 .07373 .05997 .05181 .04628 .04224 .03907 .03656 

.11403 .07664 .06153 .05280 .04698 .04278 .03949 .03690 

. 11223 .07602 .06119 .05259 .04683 .04266 .03940 .03683 

.08818 .05883 .04698 .04023 .03572 .03246 .02991 .02793 

.09553 .06115 .04819 .04101 .03627 .03287 .03023 .02820 
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Figure 2: Plot of the results shown in Table 3. The x-axis is the sample size per group and the 
y-axis is the resulting standard deviations for the effect size indices. 

small, it consistently deviates from the true value, reinforcing the poor quality of r/
2 

as an estimate of population effect size. Note that unlike the means and standard 

deviations we have shown in Tables 2 and 3, we did not show the RMSE values from 

Keselman's (1975) findings in the rightmost column of Table 4 because there was not 

enough information to calculate them. 



Table 4: ResultingRoot Mean Squared Errors for the Effect Size Indices 

Mean ES ES Sample size per group 
Variability Magnitude Index 10 20 30 40 50 60 70 80 

r,2 .12341 .08304 .06669 .05720 .05089 .04631 .04279 .03996 
Large €2 .12003 .08174 .06594 .05669 .05054 .04603 .04257 .03978 

w2 .11881 .08133 .06572 .05655 .05044 .04596 .04251 .03973 

Maximum 
r,2 .11907 .07576 .05944 .05042 .04456 .04026 .03704 .03451 

Medium €2 .10760 .07125 .05687 .04874 .04332 .03934 .03629 .03389 
w2 .10578 .07064 .05654 .04852 .04317 .03923 .03620 .03382 
r,2 .10267 .05609 .04042 .03234 .02742 .02410 .02163 .01980 

Small €2 .07617 .04391 .03296 .02718 .02354 .02105 .01915 .01773 
w2 .07452 .04342 .03270 .02702 .02343 .02097 .01909 .01767 
r,2 .12218 .07979 .06331 .05399 .04782 .04342 .04001 .03733 

Large €2 .11405 .07665 .06153 .05281 .04699 .04278 .03950 .03690 
w2 .11236 .07608 .06122 .05261 .04685 .04267 .03941 .03683 

Inter- r,2 .11268 .06821 .05229 .04372 .03827 .03439 .03147 .02921 
mediate Medium €2 .09554 .06115 .04819 .04101 .03627 .03287 .03024 .02820 

w2 .09370 .06055 .04787 .04080 .03612 .03276 .03015 .02813 
r,2 .10025 .05298 .03720 .02916 .02433 .02109 .01872 .01694 

Small €2 .07115 .03903 .02840 .02293 .01957 .01732 .01562 .01434 
w2 .06957 .03858 .02818 .02280 .01948 .0172G .01GG6 .01429 
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A. Large population ES, maximum variability 
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Figure 3: Plot of the results shown in Table 4. The x-axis is the sample size per group and the 
y-axis is the resulting root mean squared errors for the effect size indices. 

4. Conclusion 

In this study, we evaluated the performance of three major effect size indices in 

ANOVA using an intensive Monte Carlo study with 1,000,000 replications per condi­

tion, the results of which are summarized as follows. 
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First, contrary to the common belief that w2 is a lesser-biased version of €2, we 

found that €2 is the best effect size index in terms of bias. Second, we found w2 to 

be the best index among the three in terms of RMSE. Since previous studies did not 

calculate RMSEs. this is an important new finding. Although the difference in the 

performance of €2 and w2 is not very big, it is neither negligibly small especially when 

the sample size is small. Moreover, these two findings were consistent without any 

exception across all of the experimental conditions. 

Third, although i/2 is the best index in terms of standard deviation, we found that 

it is the worst in terms of both bias and RMSE. This means that the replicated values 

of iJ2 consistently deviate from the true population effect size value. As with previous 

studies, we found a positive bias of f/2 which is robust and remains even when the 

sample size per condition is 100. Care is needed when interpreting f/2 in psycholog­

ical and behavioral science where ANOVA is often applied to data without a large 

sample size. Because of fJ2's positive bias, analysts may incorrectly assume that the 

effect under study is large when it is not, especially when the sample size is small. 

Therefore, although it is the most frequently reported index, we do not recommend 

using f/2 for inferential purposes, especially when the sample size is small. 

Overall, our results indicate that €2 is a promising effect size index because bias is 

often considered as a primary measure in evaluating statistics and the difference in 

RMSEs between the two indices is relatively small compared to bias. 

Reducing the bias that may be present in an estimator is considered one of the most 

important tasks of statistical inference (Schucany, Gray, & Owen, 1971). Because 

there is no exception in the resulting order of bias, that is, lbias(i2) I < lbias(w2) I < 
lbias(f/2) I, in all our 2x3x10 = 60 Monte Carlo experiment conditions (with 1,000,000 

replications per condition). we are most certain about this result. Therefore, our re­

sults indicate that €2 is a promising effect size, because it has the least bias, and the 

discrepancy between t2 and w2 is relatively subtle in RMSE compared to bias. 

The inconsistent results reported in the previous study may be due to an old and 

weak random number generator. Keselman (1975) used the IBM 360 scientific sub­

routine package which generates random numbers by using the linear congenital algo­

rithm. However, it is known that this algorithm can produce systematically incorrect 

results in Monte Carlo methods owing to subtle correlations in generated random num­

bers (Ferrenberg, Landau. & Wong, 1992). On the other hand, the current study uses 

Mersenne twister, which is known for creating uncorrelated high-quality sequences of 

random numbers (Gentle, 2003). 

In reality, the most frequently reported index in psychological studies is f/2, followed 

by w2. Although existing literature on effect size mentions €2, it has relatively less 

attention than the other two indices. This could be partly due to the fact that the f/2 

value is often reported in commercial statistical software (Pierce, Block, & Aguinis, 

2004). For instance, Fritz, Morris, and Richler's (2011) review of effect size describes 

both r,2 and w2 in detail, but only mentions €2 briefly, stating that ·'however, c2 is 

rarely reported, and we do not discuss it further here" (p.11). Kline (2004) discussed 

the three indices in a similar manner. Our study, however, clearly indicates that €2, 
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as an effect size index, deserves more attention. 

This study is not without limitations. In this study, we only considered cases when 

the assumptions of ANOVA in deriving effect size indices are correct. The number of 

conditions with violated assumptions is too large for a single undertaking. Thus, we 

chose to focus our attention to the case where the assumptions are correct, which has 

never been studied this extensively before. Note that previous studies did not find 

a substantial difference in the results for both cases. As we stated in our methodol­

ogy, previous researchers considered cases under other assumptions. Keselman (1975) 

considered cases where the population distribution is exponential rather than nor­

mal and found little difference between the two. Meanwhile, Carroll and Nordholm 

(1975) considered cases where the population variance is heterogeneous and discov­

ered that "heterogeneity of variances had negligible effects on the estimates under 

conditions of equal n" (p.553). It is important to note, however, that in these studies, 

both the number of replications and the variety of violations are limited. As we have 

mentioned earlier, there are many more conditions in which these assumptions are 

violated, which future studies should explore and consider. Another limitation of our 

study is that we only used a one-way, independent ANOVA, the most basic ANOVA 

model. Although we expect that similar results as ours can be derived from factorial 

designs (i.e., models with more than one factor) and repeated measurement designs, 

future studies need to further verify this expectation. 

Appendix 

The R code used in our study for large effect magnitudes and maximum variability 

is presented below. Noto that this code can be easily adapted for other conditions by 

changing the value of muvec. 

muvec <- c(0.00,0.00,1.20,1.20) 

meanmu <- mean(muvec) 

sigb <- sum((muvec-meanmu)�2)/4 

eta2p <- sigb/(sigb+1) 

k <- length(muvec) 

nsim <- 1000000 

njs <- c(10,20,30,40,50,60,70,80,90,100) 

BIASmat <- matrix(NA,nrow=length(njs),ncol=3) 

rownames(BIASmat) <- njs 

colnames(BIASmat) <- c("eta2","epsilon2","omega2") 

RMSEmat <- matrix(NA,nrow=length(njs),ncol=3) 

rownames(RMSEmat) <- njs 

colnames(RMSEmat) <- c("eta2","epsilon2","omega2") 

SDmat <- matrix(NA,nrow=length(njs),ncol=3) 

rownames(SDmat) <- njs 

colnames(SDmat) <- c("eta2","epsilon2","omega2") 
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niter <- 1 

for (nj in njs){ 

} 

x <- matrix(NA,nrow=nj,ncol=4) 

eta2 <- rep(NA,nsim) 

epsilon2 <- rep(NA,nsim) 

omega2 <- rep(NA,nsim) 

for (ii in 1: nsim){ 

} 

y <- c(rnorm(n=nj,mean=muvec[1],sd=1), 

rnorm(n=nj,mean=muvec[2] ,sd=1), 

rnorm(n=nj,mean=muvec[3] ,sd=1), 

rnorm(n=nj,mean=muvec[4] ,sd=1)) 

x <- as.factor(c(rep("mu1" ,nj) ,rep("mu2" ,nj), 

rep("mu3" ,nj) ,rep("mu4" ,nj))) 

res <- anova(aov(y-x)) 

res <- as.matrix(res) 

SSb <- res[1,2] 

SSt <- res[1,2] + res[2,2] 

MSw <- res[2,3] 

eta2[ii] <- SSb/SSt 

epsilon2[ii] <- (SSb - 3*MSw)/SSt 

omega2[ii] <- (SSb - 3*MSw)/(SSt+MSw) 

BIASmat[niter,1] <- mean(eta2) - eta2p 

BIASmat[niter,2] <- mean(epsilon2) - eta2p 

BIASmat[niter,3] <- mean(omega2) - eta2p 

RMSEmat[niter,1] <- sqrt(sum((eta2-eta2p)-2)/nsim) 

RMSEmat[niter,2] <- sqrt(sum((epsilon2-eta2p)-2)/nsim) 

RMSEmat[niter,3] <- sqrt(sum((omega2-eta2p)-2)/nsim) 

SDmat[niter,1] <- sqrt(sum((eta2-mean(eta2))-2)/nsim) 

SDmat[niter,2] <- sqrt(sum((epsilon2-mean(epsilon2))-2) 

/nsim) 

SDmat[niter,3] <- sqrt(sum((omega2-mean(omega2))-2) 

/nsim) 

niter <- niter+1 
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